The Heart and the Hydraulic Ram.

For the discussion of the dynamics of heart action, Rudolf Steiner invites us to consider the hydraulic ram, and many have attempted to do this.  However, literature on the topic contains instances which seem to indicate rather poor grasp on the part of the authors of the basic physics of ram-action.  Pin-pointing these instances would be unnecessarily invidious.  Rather, we attempt here to “set the record straight,” so that discussion can proceed on more secure foundations.

Ram action ordinarily relies on two principle facts.

· Pressure in an enclosing vessel distributes forces uniformly on the wall of the vessel.  That is, they are the same everywhere on it.  (If something disturbs this equilibrium condition, so that local pressure differentials occur, these induce flows in the liquid medium which continue until these differentials reduce themselves to zero.  Equilibrium is eventually re-established.)

· Liquids are essentially incompressible.  They suffer negligible change of volume with change of pressure.

Note especially that, in equilibrium, pressure (or force per unit area) in an enclosing vessel must therefore be independent of the vessel’s shape, but also that flow, and flow-rates are not so independent.  Flow indicates disequilibrium, and the instantaneous patterns of both force and flow during the reduction of this disequilibrium can be quite complex.  If, however, changes are sufficiently slow (and we need eventually to define what we mean by “slow”), we can generally take the pressure to be the same everywhere during displacements—which is tantamount to saying that the equilibrium condition is reached instantaneously.
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To see the application of these ideas to a rather idealised situation, consider figure 1.
We have two cylinders, connected by a stout pipe, part-filled with liquid, and closed by frictionless, but leak-free, pistons.  To the latter two fictions, or idealisations, we add the further convenient fiction that a force F1 is applied to the left piston, and a force F2 to the right piston, via narrow con-rods, in such a way that these two forces may considered to be applied at points.  The forces are then communicated to the liquid as a pressure, P.  That is, the forces are distributed over the lower faces of the pistons uniformly, such that the distributed forces sum to the single, applied force in each case.  Using algebraic notation, this amounts to,
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Figure 1


From our basic understanding, stated above, of pressure and equilibrium, and as already indicated by these little equations, we must have that the pressure is the same in both cylinders (and, for that matter, in the connecting pipe).   Accordingly,
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and from this we get (after a bit of manipulation),
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from which we see that the forces applied via the con-rods must stand in the same ratio as the cross-sectional areas of the pistons to which they are applied.   This is ram action.  
A number of things conspire to make real hydraulic rams less than ideal, of course, but not by any means to the point of rendering them useless.  They are put to considerable practical use.  Vehicle brakes and garage jacks come to mind.  Real pistons are neither frictionless nor leak-free, so some of every energy transaction involved in using a ram inevitably goes to making up for these and other deficiencies, and we must perforce also speak of efficiency when speaking of practical rams: “energy out” should, ideally, equal “energy in”, but it does not, so we define efficiency as the ratio of the two, usually as a percentage.

Efficiency% = (energy out / energy in) times 100.

If, as is probably usual, there is a “duty cycle”, in the sense of employing the ram repeatedly over a period of time, then efficiency will be reckoned in terms of units of energy per unit time, or “Power.”  Engineers sometimes favour the horsepower.  Scientists like the watt.  There are 746 of the latter to every one of the former.  Substitute your favourite power unit for “energy in” and “energy out,” above, to recast the efficiency equation in a form that takes account of time.
We could, of course, make use of a gas in our ram, and often do.  We are not accustomed to calling gas-primed rams rams.  We more often call them pumps.  The principles are the same—save for the incompressibility.  Gases compress fairly readily.  Still, a bicycle pump is a ram, for all that.  There is a small area ‘communicating’ with a large, via pressure.  The pressure in a tyre can be considerable, but if the cross-sectional area of its valve is very small, then the actual “back force” to be countered (note that it is force, not pressure, that needs countering) by the pump during inflation of the tyre is, correspondingly, very small.  The tyre pressure may amount to a good many pounds per square inch, but the area of most valves is nowhere near a square inch.
Volume is length, times breadth, times height:  if two of these dimensions are constrained to be constant, changes in shape that preserve volume must be accommodated entirely by the third, unconstrained, dimension—or by the compressibility of the material in the volume, if it has any.
Thus, the geometry of the volumes of solid-walled, liquid-based rams tends to be much simpler than that of solid-walled, gas-based rams.  A reduction of the effective length of one of the two liquid-filled cylinders depicted in figure 1 is exactly matched by a proportional increase in the effective length of the other. We get a length for a length.  This is how a skilled operator of a mechanical grab can, without breaking it, pick up an egg in its great jaws.  The linkage is direct, immediate, and proportional.  Looking at figure 1 again, suppose that the left-hand piston is depressed by a distance d1.   A volume of liquid, V, amounting to A1 times d1, is displaced.  Accordingly, the right-hand piston must be raised a distance d2, given by
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in order to preserve the total volume of the liquid.  We see that the distances moved by the two pistons are, like the forces, in the ratio of the cross-sectional areas of the pistons, but here it is the inverse ratio that applies.  

But if gas carries the pressure, the situation is far otherwise.  The gas is elastic and can bounce.  It can therefore store, and restore, energy in both kinetic and potential forms.  The ram thereby automatically has a natural mode and period of oscillation—perhaps more than one—and it can resonate.  Outputs do not immediately follow inputs.  If the ram is “error-driven,” as in some kind of servo-loop, these features make its control significantly more difficult.

The behaviour of a gas-primed ram is mentioned because of a curious inversion: if we hope to try out the notion of ram-action on the heart, then, while we do have a liquid—namely, blood—in the “system,” we do not have rigid, passive containers and pistons.  We have a non-rigid, possibly rather elastic, container, and non-rigid connecting vessels, which, far from being passive, may actually supply all the pressures active in the system.  At least in some regards, the heart walls and the blood vessels can be expected to produce “gas-like” behaviour in the ram, or ram-like thing, that we surmise the heart might in some way be.  For example, if the heart walls are elastic, we can expect oscillations, probably damped trains of them.  If the heart is in a servo-loop, control will surely be a delicate and tricky affair.
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